
PROJECT:



w

SOFTWARE ENGINEERING LABORATORY SERIES SEL-88-001

SYSTEM TESTING OF A
PRODUCTION ADA ® PROJECT:

THE GRODY STUDY

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771



w

=

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space

Administration/Goddard Space Flight Center (NASA/GSFC) and

created for the purpose of investigating the effectiveness

of software engineering technologies when applied to the

development of applications software. The SEL was created

in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Systems Development Opera-

tion)

The goals of the SEL are (I) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that include this document.

The contributors to this document include

Jeffrey Seigle (Computer Sciences Corporation)

Linda Esker (Computer Sciences Corporation)

Ying-Liang Shi (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

National Technological Information Service

5285 Port Royal Road

Springfield, Virginia 22161

NASA Scientific and Technical Installation Facility

P.O. Box 8757

BWI Airport, Maryland 21240
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ABSTRACT

_J

The use of the Ada®_language and design methodologies

that utilize its features has a strong impact on all phases

of the software development project lifecycle. At the Na-

tional Aeronautics and Space Administration/Goddard Space

Flight Center (NASA/GSFC), the Software Engineering Labora-

tory (SEL) conducted an experiment in parallel development

of two flight dynamics systems in FORTRAN and Ada. The teams

found some qualitative differences between the system test

phases of the two projects. Although planning for system

testing and conducting of tests were not generally affected

by the use of Ada, the solving of problems found in system

testing was generally facilitated by Ada constructs and de-

sign methodology. Most problems found in system testing

were not due to difficulty with the language or methodology

but to lack of experience with the application.

iAda® is a registered trademark of the U. S. Government Ada

Joint Program Office (AJPO).
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SECTION 1 - INTRODUCTION

Ada® 1 is not just a new programming language but a part

of a major advance in software engineering technology that

includes new approaches for all phases of the software de-

velopment lifecycle. This paper, one of a series of reports

examining each project phase [Brophy 1987, Brophy 1988],

evaluates the impact of the use of Ada when compared with

FORTRAN in the system test phases of two projects.

The Software Engineering Laboratory (SEL) of the National

Aeronautics and Space Administration/Goddard Space Flight

Center (NASA/GSFC) conducted an experiment involving the

parallel development of a software system in both the Ada
2

and FORTRAN programming languages. NASA/GSFC and Com-

puter Sciences Corporation (CSC) were cosponsors of the

experiment, which was supported by personnel from the three

SEL participating organizations: NASA/GSFC, CSC, and the

University of Maryland. The chief goals of the study were

to characterize the development lifecycle of a large project

when Ada is used as the implementation language with a de-

sign methodology that can take advantage of its features and

to determine the impact of the use of Ada on reusability,

reliability, maintainability, productivity, and portability.

Two teams each developed a Gamma Ray Observatory (GRO) sat-

ellite dynamics simulator from the same specifications. One

team used FORTRAN as the target language with a conventional

m

iAda® is a registered trademark of the U. S. Government

Ada Joint Program Office (AJPO).

2The acronyms were Gamma Ray Observatory (GRO) Dynamics

Simulator in Ada (GRODY) for the Ada project and GRO Dynam-

ics Simulator in FORTRAN (GROSS) for the FORTRAN project.
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design methodology, which is the usual approach for this

type of application. The other team used Ada, with an

object-oriented design methodology developed at NASA/GSFC

[Seidewitz, Stark 1986]. NASA uses the GRO dynamics simula-

tor to test and to evaluate GRO flight software under condi-

tions that simulate the expected in-flight environment as

closely as possible [Agresti 1986]. By the end of the

system testing phases, the teams had produced 39,767 lines

of FORTRAN and 128,046 lines of Ada, where lines of code are

the total number of physical lines including exe- curable

code and nonexecutable code, comments, and blank lines.

Although these figures give a rough idea of the com-

parative sizes of the two efforts, they do not give a pre-

cise basis for comparison of the effort required for

development in the two languages [Firesmith 1988].

Data were collected directly from team members and from a

database maintained by SEL. Members of both teams who par-

ticipated in system testing were interviewed and asked about

their expectations, actual findings, problems, solutions,

and opinions. Team members also completed forms throughout

the projects describing their effort levels and changes to

code, and that information was entered into the SEL database.

Presented data are taken from the database, and other sources

are referred to since much of the data has already been

reported.
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SECTION 2 - DEFINITION OF THE SYSTEM TEST PHASE

Ada unit testers performed some integration before system

testing officially began. System testing and unit testing

effort overlapped considerably. The team members reported

their hours on Personnel Resource Forms (PRFs) and attributed

hours to specific activities. Figures 2-1 and 2-2 show the

weekly efforts for unit testing and system testing on the

two projects.

In the FORTRAN project, a clear delineation exists between

effort attributed to system testing and effort attributed to

unit testing although they overlap slightly. In the Ada

project, participants were performing system test work at

the same time as unit test work, and the overlap is consid-

erable. This overlap plus team members' comments suggest

that the line between unit testing and system testing was

blurred on the Ada project.

When the data from PRFs giving time attributed specifically

to system testing is considered and this effort is calcu-

lated as a percentage of total project effort, the Ada proj-

ect used 11.3 percent of its effort on system testing, and

the FORTRAN project used 8.91 percent. In addition to de-

fining activities by the hours attributed directly to them,

each project phase had a formal start and end date. Regard-

less of attributed activity, the sum of all effort occurring

during the system test phases was found and the effort during

system test determined as a percentage of all effort on the

entire project. Of the total effort on the two projects,

the portion used during the system test phase was 22.8 per-

cent on the Ada project and 17.9 percent on the FORTRAN

project. The standard allotment for system testing is

20 percent in the flight dynamics area. The Ada project

system testing phase was not grossly out of proportion, but

a general conclusion cannot be drawn about the language since
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other variables, such as greater training time for the Ada

project and overlap of activities other than system testing

in the system testing phases, exist.
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SECTION 3 - WRITING THE SYSTEM TEST PLAN

The author of the system test plan for the Ada experiment

[Stark 1987] said that the plan was based on the FORTRAN

plan being developed in parallel [Garrick]. He found no

need for special consideration because of the use of Ada or

the object-oriented design methodology; this is consistent

with the idea that system test plans in this environment are

generally written to test against functional specifications,

which ideally do not depend on the implementation language.

However, because the Ada team did not have the same schedule

constraints as the FORTRAN team, they defined more tests--31

compared to 14 for the FORTRAN team.

w

5202

3-1



%.--

w

w

SECTION 4 - CONDUCTING THE SYSTEM TEST

4.1 IMPACT QF ADA FEATURES

Conducting system tests was not generally different for the

Ada project than for the FORTRAN project. The system test

teams usually did not need to examine internals to run tests

and to evaluate results. However, the Ada team did find a

few Ada features that needed special attention.

One case in which an Ada feature was an issue was in induc-

ing conditions that would cause Ada exceptions to be raised.

Many times this inducement was relatively easy, such as de-

letion of a required file; other times it was not, i.e., for

exceptions that flagged conditions that may not be intro-

duced externally such as division by zero. Although some

exceptions were difficult to test overall, the team felt

that they aided incomprehensive error handling.

The Ada test team reported that it was difficult to coordi-

nate concurrent tasks for testing although this coordination

can be challenging regardless of the language. The Ada lan-

guage offers tasking but FORTRAN does not, so the Ada team

took advantage of the ease of tasking more than the FORTRAN

team [Brophy 1988]. Although concurrency was easier to

design and implement in Ada, the team reported that set-

ting up tests and diagnosing problems were more difficult.

They agreed, however, that these problems were not peculiar

to Ada but would be found in any system using concurrency

and that since tasking was easier to implement, Ada provided

a net advantage when using concurrency.

The FORTRAN project used a form of tasking that was supported

by the operating system; the method did not provide true con-

currency but a series of tasks whose execution was controlled

by logic within the application software. Only one task was

active at any given time. The FORTRAN team did not report

5202
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any unusual problems in testing a system with this architec-

ture and attributed only one or two errors to difficulties

stemming from their tasking approach.

Occasionally, the Ada rename feature caused confusion during

debugging sessions. This was attributed to the debugger's

failure to incorporate the rename feature rather than to a

difficulty in the language. When the debugger did not rec-

ognize the name used to rename a variable, programmers would

query the debugger for the value of a variable, and if it

were a name used to rename another variable, they could not

get the value. This problem was discussed with a member of

the Digital Equipment Corporation (DEC) Ada team; she said

she was unaware of the problem and would treat it as a bug.

She believed the problem should be fixed and that it might

even be resolved in the next release of the debugger.

Although the Ada exception handling, tasking, and rename

features required special attention and caused some prob-

lems, none was a major roadblock, and the team felt the

power added by these features outweighed the difficulties.

4.2 TOOLS

Ada development is still relatively new, so despite many

excellent offerings of Ada tools, their availability is

neither as great as nor as widely known as the tools for the

more mature FORTRAN environment. The Ada team developed
1

software on a DEC VAX/VMS system, and DEC offers tools

that are compatible with Ada for use on the VAX [Schultz

1988]. The DEC symbolic debugger and Code Management System

(CMS) were the tools used in system testing. When asked

what other tools would have been useful, one team member

IDEC, VAX, and VMS are registered trademarks of Digital

Equipment Corporation.

5202

4-2



w

suggested that the DEC Performance and Coverage Analyzer

(PCA) would also have been helpful; other team members re-

sponded that they did not suggest that other tools were nec-

essary because they had no information about other available

tools. Although no clear need was identified for additional

tools, more information regarding the availability of other

Ada-oriented testing tools would have been helpful.

The FORTRAN team also developed their system on a VAX and

used only a debugger. They felt that tool was sufficient

for their testing.

W

L
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SECTION 5 - ERRORS DISCOVERED DURING SYSTEM TESTING

5.1 SOURCE OF DATA

All team members recorded information for each software

change on a Change Report Form (CRF). The CRF describes the

type of change. Data were examined for changes with a type

of error correction. When the type of change is an error

correction, the form also describes the class of error, the

source of the error, the time to isolate the error, and the

time to implement the change. This data was entered into

the SEL database.

5.2 CLASSES OF ERRORS DISCOVERED DURING SYSTEM TESTING

Brophy noted that Ada developers in the experiment found

unit testing to be more difficult for Ada [Brophy 1988].

Since the team found isolation of Ada units to be difficult,

unit testing usually involved combinations of units rather

than single units. The team members reported that the types

of errors discovered through this method of unit testing

were often mismatched data interfaces and con- flicting

assumptions between internal components, which are errors

more typical of those discovered in later testing phases of

conventional FORTRAN projects. Although this in- tegration

increased unit testing effort, the team believed that it

made system testing easier. The team members also found

that the semantic checking performed by the Ada com- piler

uncovered mismatched calling sequences at compile time that

would not have been found in FORTRAN until run time.

The errors described on the CRFs were divided into the fol-

lowing classes: computational, data value (usage of vari-

ables), data initialization, external interface, internal

interface, and logic. Figure 5-1 shows the distribution of

errors for each project by class of error.
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Of the total errors found during system testing, internal

interface errors accounted for 21 percent in the Ada project

and 29 percent in the FORTRAN project. However, this appar-

ent difference is not statistically significant.

Because the Ada system was not intended to become opera-

tional, managers placed a lower priority on it when assign-

ing effort to it, and it was difficult to get support that

the team thought they needed from analysts who had strong

backgrounds in the specific application. The team attributed

most errors to misinterpretation of the specifications, such

as errors in mathematical computation, rather than design

errors or coding errors.

The design for the FORTRAN project was largely based on

stable designs of similar systems already developed, and

approximately 36 percent of the code was reused from other

systems. No precedent existed for an Ada system of the type

being developed; therefore, the design was new, and only 2

percent of the code was reused from previous systems

[McGarry, Agresti 1988]. This difference in reuse is another

variable that may have affected the error profile of the

FORTRAN project.

5.3 SOLVING ERRORS FOUND DURING SYSTEM TESTING

5.3.{ ISOLATING ERRORS

The Ada system test team reported that in some ways the Ada

code was easier to debug than similar FORTRAN systems be-

cause the design methodology controls access to related data

as opposed to the FORTRAN implementation that exploited large

COMMON blocks with little control over data access. For the

same reason the scope of effect of software errors was more

limited in the Ada implementation. The team reported that

they generally found errors easily in the Ada implementation

because of the program structures that are enforced by the

language. However, the times to isolate causes of errors

5202
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indicate that the Ada team actually spent more time solving

eYrors than the FORTRAN team. The CRFs described time to

isolate an error defined as the time it took for the respon-

sible developer to isolate an error and does not include the

time to determine who is the responsible developer. As shown

in Figure 5-2, both teams solved most of their errors in less

than 1 hour; however, the FORTRAN team solved 82 percent of

errors in less than 1 hour, and the Ada team solved only 58

percent in less than 1 hour. When the first two categories

are combined, they show that the proportion of errors solved

in less than 1 day were similar for both projects: 94 per-

cent for the FORTRAN project and 96 percent for the Ada proj-

ect.

The Ada compiler does semantic checking that spots some er-

rors that would not be found until testing in a FORTRAN sys-

tem, so the proportion of easier to solve errors may have

been reduced in the Ada system test phase.

The development team found the readability of Ada as com-

pared to FORTRAN, in part due to more rigid coding standards,

to be a clear advantage in debugging, except where long var-

iable names appeared in complex mathematical expressions.

In some instances, this problem was easily solved by the

judicious selection of variable names and by renaming varia-

bles with long names when they were used in such expressions.

5.3.2 REPAIRING ERRORS

As shown in Figure 5-3, once the problems were isolated the

FORTRAN team needed slightly less time to make the changes.

Although the Ada compiler is more comprehensive and detects "

some errors earlier, it often requires recompilation of un-

changed units that are dependent on changed units. Compila-

tion errors can occur even in unchanged units being

recompiled. This recompilation was sometimes a significant

effort, particularly because of the configuration of the Ada

5202
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system. The Ada implementation decision of nesting versus

library units had a ripple effect in debugging at the system

test level; a great deal of recompilation was necessary be-

fore some coding changes could be tested. This complaint

also surfaced in the implementation phase [Brophy 1988].

5.3.3 NONLANGUAGE DIFFERENCES

The FORTRAN team members had greater experience in both the

language in which they were working and in the particular-

application [McGarry, Agresti 1988]. The Ada team consist-

ently reported that the single biggest obstacle to effective

system testing was the lack of availability of people who

were intimately familiar with the technical aspects of the

application. Although the Ada team members were experienced

software developers, having on the average more years of

software development experience than the FORTRAN team mem-

bers [McGarry, Agresti 1988], their lack of experience with

the specific application made it more difficult for them to

detect and solve errors than for the FORTRAN team. These

differences in personnel background may account for the

ability of the FORTRAN team to isolate and correct errors

with equal or less effort than the Ada team, despite the

language advantages described by the Ada team.

L
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SECTION 6 - LESSONS LEARNED

All personnel involved in both projects believed that soft-

ware development in Ada with an appropriate design methodol-

ogy is a different experience than the conventional FORTRAN

development of similar systems.

Team members have subjectively attributed the many differ-

ences between the results of the two projects to various

differences in languages anddesign methodologies, but too

many variables exist to be able to clearly assign all effects

in the system test phases to their causes. Some general

statements can be made about what was learned.

Prep_rina for system testina and executina the tests was not

affected by the Droarammina lanauaq@. The system test plan

for Ada was essentially the same as the plan for FORTRAN.

When running the tests, testers were not concerned with the

language.

A qood repertoire of tools is important. The extra effort

needed to resolve confusion and software problems due to the

error in the debugger shows the impact of even minor prob-

lems with tool software. An organization can most effec-

tively use its human resources if it has a good tool set and

actively promotes the use of the tools.

Ada may reduce some types of errors. Team members consist-

ently reported that the Ada compiler detected many of their

interface errors even before testing began. Objective data

neither confirms nor contradicts this assertion, but it is a

reasonable one since the Ada compiler checks for correct

interfaces, and the FORTRAN compiler does not.

Ada may be easier to debuq. Team members reported that

Ada's better readability and the organization of the team's

design allowed them to find errors more easily than the

5202
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FORTRAN team. Objective data neither confirms nor contra-

dicts this assertion, partly because of uncontrolled experi-

mental variables.

RecomDilation of Ada units can have a sianificant cost.

Recompilation issues should be considered short of compro-

mising the integrity of the design. It is important to con-

trol the design to avoid unnecessary dependencies that will

require extensive recompilation in testing phases.

D_finition of test phases for Ada systems is not well de-

fined. Testing Ada software at the system level is not as

clearly defined as was presumed at the outset of the project.

Although the system test plan itself was nearly the same as

for the FORTRAN project, and it was clear which tests were

to be designated system tests, it is very difficult to draw

a hard line between unit testing and system testing. Test-

ing Ada software must be approached differently than testing

systems where functions can be easily isolated for testing.

The differences that could clearly be attributed to the use

of Ada were generally positive ones, and Ada features with

negative aspects were either redeemed by their advantages or

easily mitigated. As the Ada environment matures and as

developers get more experience, we expect improvements to

occur in the building and testing of systems built with Ada

and object-oriented design when compared to methods that are

still considered conventional.
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